Regulation of oncogenic transcription factor hTAF(II)68-TEC activity by human glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
نویسندگان
چکیده
Tumour-specific chromosomal rearrangements are known to create chimaeric products with the ability to generate many human cancers. hTAF(II)68-TEC (where hTAF(II)68 is human TATA-binding protein-associated factor II 68 and TEC is translocated in extraskeletal chondrosarcoma) is such a fusion product, resulting from a t(9;17) chromosomal translocation found in extraskeletal myxoid chondrosarcomas, where the hTAF(II)68 NTD (N-terminal domain) is fused to TEC protein. To identify proteins that control hTAF(II)68-TEC function, we used affinity chromatography on immobilized hTAF(II)68 (NTD) and MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS and isolated a novel hTAF(II)68-TEC-interacting protein, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). GAPDH is a glycolytic enzyme that is also involved in the early steps of apoptosis, nuclear tRNA export, DNA replication, DNA repair and transcription. hTAF(II)68-TEC and GAPDH were co-immunoprecipitated from cell extracts, and glutathione S-transferase pull-down assays revealed that the C-terminus of hTAF(II)68 (NTD) was required for interaction with GAPDH. In addition, three independent regions of GAPDH (amino acids 1-66, 67-160 and 160-248) were involved in binding to hTAF(II)68 (NTD). hTAF(II)68-TEC-dependent transcription was enhanced by GAPDH, but not by a GAPDH mutant defective in hTAF(II)68-TEC binding. Moreover, a fusion of GAPDH with the GAL4 DNA-binding domain increased the promoter activity of a reporter containing GAL4 DNA-binding sites, demonstrating the presence of a transactivation domain(s) in GAPDH. The results of the present study suggest that the transactivation potential of the hTAF(II)68-TEC oncogene product is positively modulated by GAPDH.
منابع مشابه
Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues.
We have isolated and identified cDNA clones containing part of the coding sequence for rat glyceraldehyde-3-phosphate-dehydrogenase (GAPDH, E.C. 1.2.1.12). By using one of these clones as a probe, we have shown that: i) the abundance of GAPDH mRNA is different in various tissues of the adult rat and in good correlation with the abundance of the enzyme; ii) the transcription rates are quite simi...
متن کاملSpecific phosphorylated forms of glyceraldehyde 3-phosphate dehydrogenase associate with human parainfluenza virus type 3 and inhibit viral transcription in vitro.
We previously reported specific interaction of cellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH), the key glycolytic enzyme, and La protein, the RNA polymerase III transcription factor, with the cis-acting RNAs of human parainfluenza virus type 3 (HPIV3) and packaging of these proteins within purified virions (B. P. De, S. Gupta, H. Zhao, J. Z. Drazba, and A. K. Banerjee, J. Biol. Chem....
متن کاملGlyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal.
The altered metabolism in most tumor cells consists of elevated glucose uptake and increased glycolysis even in the presence of high oxygen tension. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an obligatory enzyme in glycolysis. Here, we report that acetylation at lysine 254 (K254) increases GAPDH activity in response to glucose. Furthermore, acetylation of GAPDH (K254) is reversibly re...
متن کاملThe C-terminal domain of glyceraldehyde 3-phosphate dehydrogenase plays an important role in suppression of tRNALys3 packaging into human immunodeficiency virus type-1 particles
Human immunodeficiency virus type-1 (HIV-1) requires the packaging of human tRNALys3 as a primer for effective viral reverse transcription. Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) suppresses the packaging efficiency of tRNALys3. Although the binding of GAPDH to Pr55 gag is important for the suppression mechanism, it remains unclear which domain of GAPDH is ...
متن کاملPurification and partial characterization of glyceraldehyde-3-phosphate dehydrogenase from the ciliate Tetrahymena thermophila.
In the present study, we purified the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is involved in cellular energy production and has important housekeeping functions, from the ciliate Tetrahymena thermophila using a three-step procedure. The enzyme was purified ~68 folds by ammonium sulfate precipitation, followed by two steps of column chromatography (DEAE-cellulose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 404 2 شماره
صفحات -
تاریخ انتشار 2007